Robust Environmental Perception and Reliability Control for Intelligent Vehicles
Huijun Gao, Huihui Pan, Weichao Sun, et al.
PDF
ca. 160,49 €
Amazon
iTunes
Thalia.de
Hugendubel
Bücher.de
ebook.de
kobo
Osiander
Google Books
Barnes&Noble
bol.com
Legimi
yourbook.shop
Kulturkaufhaus
ebooks-center.de
* Affiliatelinks/Werbelinks
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Maschinenbau, Fertigungstechnik
Beschreibung
This book presents the most recent state-of-the-art algorithms on robust environmental perception and reliability control for intelligent vehicle systems. By integrating object detection, semantic segmentation, trajectory prediction, multi-object tracking, multi-sensor fusion, and reliability control in a systematic way, this book is aimed at guaranteeing that intelligent vehicles can run safely in complex road traffic scenes.
- Adopts the multi-sensor data fusion-based neural networks to environmental perception fault tolerance algorithms, solving the problem of perception reliability when some sensors fail by using data redundancy.
- Presents the camera-based monocular approach to implement the robust perception tasks, which introduces sequential feature association and depth hint augmentation, and introduces seven adaptive methods.
- Proposes efficient and robust semantic segmentation of traffic scenes through real-time deep dual-resolution networks and representation separation of vision transformers.
- Focuses on trajectory prediction and proposes phased and progressive trajectory prediction methods that is more consistent with human psychological characteristics, which is able to take both social interactions and personal intentions into account. Puts forward methods based on conditional random field and multi-task segmentation learning to solve the robust multi-object tracking problem for environment perception in autonomous vehicle scenarios.
- Presents the novel reliability control strategies of intelligent vehicles to optimize the dynamic tracking performance and investigates the completely unknown autonomous vehicle tracking issues with actuator faults.
Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Kundenbewertungen
Schlagwörter
Reliability control, Imaging processing, Multi-sensor data fusion, Monocular 3D object detection, Artificial intelligence, Semantic segmentation, Intelligent vehicles, Robust environmental perception, Multi-object tracking