Text Mining in Educational Research
Myint Swe Khine (Hrsg.)
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Geisteswissenschaften, Kunst, Musik / Schulpädagogik, Didaktik, Methodik
Beschreibung
This edited book consolidates and documents recent research on topic modeling in text mining using Latent Dirichlet Allocation (LDA). Written by leading experts in topic modeling, it covers a wide range of areas, such as theory building, systematic research, and innovative applications. This book offers a thorough exploration of the latest advancements in topic modeling. From identifying issues in unstructured text data to categorizing documents and extracting valuable insights, the book provides practical use of LDA as a powerful tool in qualitative and quantitative research. The chapters discuss the rapidly evolving landscape of topic modeling algorithms and offer tangible examples and applications of LDA in educational research, showcasing its real-world impact. This book dives into the heart of educational research and uncovers the transformative potential of Latent Dirichlet Allocation in shaping the future of topic modeling. This book is a valuable resource, highlighting exemplary works and rapid advances in the field. It appeals to students, researchers, and practitioners interested in text mining.
Kundenbewertungen
Latent Dirichlet Allocation (LDA), Natural language processing (NLP), Text mining approach, Language Massive Open Online Courses, Text mining, Topic modeling, Machine learning