Digital Molecular Magnetic Resonance Imaging

Bamidele O. Awojoyogbe, Michael O. Dada

PDF
ca. 171,19
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Nature Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Atomphysik, Kernphysik

Beschreibung

This book pushes the limits of conventional MRI visualization methods by completely changing the medical imaging landscape and leads to innovations that will help patients and healthcare providers alike. It enhances the capabilities of MRI anatomical visualization to a level that has never before been possible for researchers and clinicians. The computational and digital algorithms developed can enable a more thorough understanding of the intricate structures found within the human body, surpassing the constraints of traditional 2D methods. The Physics-informed Neural Networks as presented can enhance three-dimensional rendering for deeper understanding of the spatial relationships and subtle abnormalities of anatomical features and sets the stage for upcoming advancements that could impact a wider range of digital heath modalities. This book opens the door to ultra-powerful digital molecular MRI powered by quantum computing that can perform calculations that would take supercomputers millions of years.

Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Cover Green Carbon Quantum Dots
Devendra Kumar Singh
Cover Nanotechnology
Ashwani Kumar

Kundenbewertungen

Schlagwörter

Spatial and temporal resolution, Machine learning models, Bloch NMR, Adult brain tumors, Aortic-valve stenosis, Magnetic resonance relaxometry, Physics-informed neural networks (PINNs), Pulmonary arterial hypertension