Detached-Eddy Simulation Series Methods for Compressor Internal Flow

Method, Development and Application

Limin Gao, Lei Zhao, Ruiyu Li, et al.

PDF
ca. 181,89
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Nature Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Luft- und Raumfahrttechnik

Beschreibung

This book concentrates on high-fidelity numerical methods for predicting internal flows within aeroengines’ compressors. A distinctive features of this work is the establishment of a comprehensive research framework. Specifically, it starts with engineering application requirements and integrates high-performance parallel algorithms to develop detached eddy simulation (DES)-series methods tailored to the needs of compressor design. Additionally, it encompasses the development of data analysis methods suitable for handling the "vast" amounts of high-fidelity unsteady flow data in compressors and the high spatial resolution experimental results. This book takes us from making the intricate details of compressor flow field structures "visible" to “explainable”. Another noteworthy aspect of this book is its practical orientation, seamlessly intergrating theoretical concepts with practical applications. Herein, it addresses three major engineering problems in detail and elucidates the technical approaches involving advanced numerical methods and data analysis techniques for solving these physical problems.

The book highlights the challenging issues associated with complex internal flows in compressors, the governing equations for DES-series methods, and the implementation strategies for numerical simulations of internal compressor flows. They also delve into data-driven analysis methods for unsteady flow field data, high-fidelity numerical simulations of flow in the blade root region of compressors, dynamic flow capture methods in the tip region of compressor blades, and simulation and analysis of flow fields in inlet distortion generators.

This book serves as a valuable reference for researchers and engineering professionals in the aerospace, computational fluid dynamics, and high-performance turbomachinery fields. Additionally, it can be used as a specialized textbook for doctoral and master's students in disciplines such as aerospace science and technology, power engineering, and engineering thermophysics.

 

Weitere Titel in dieser Kategorie
Cover Space Operations
Alexander Schmidt
Cover Unmanned Aircraft Design
Mohammad H. Sadraey
Cover Jet Transport Technique
Josep J. Masdemont

Kundenbewertungen

Schlagwörter

delayed detached eddy simulation, high fidelity computing, flow separation, high Reynolds number flows, dynamic mode decomposition, hybrid RANS-LES, detached eddy simulation, proper orthogonal decomposition, unsteady flow