Privacy Preservation in IoT: Machine Learning Approaches

A Comprehensive Survey and Use Cases

Youyang Qu, Longxiang Gao, Yong Xiang, et al.

PDF
ca. 58,84

Springer Nature Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner.

The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions.

Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates.


Weitere Titel in dieser Kategorie
Cover AI Glossary
Richard Khan
Cover AI Glossary
Richard Khan
Cover Causal Inference for Data Science
Aleix Ruiz de Villa Robert

Kundenbewertungen

Schlagwörter

Blockchain, Privacy Protection, Data Sharing, Machine Learning, Internet of Things