Towards User-Centric Intelligent Network Selection in 5G Heterogeneous Wireless Networks

A Reinforcement Learning Perspective

Kun Xu, Bin Jiang, Zhiyong Du, et al.

PDF
ca. 96,29

Springer Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Elektronik, Elektrotechnik, Nachrichtentechnik

Beschreibung

This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond.

Weitere Titel in dieser Kategorie
Cover Electric Machinery and Drives
Nabeel A. O. Demerdash

Kundenbewertungen

Schlagwörter

Game Theory, Network Handoff, Reinforcement Learning, QoE Game, Network Selection, Intelligent Decision-Making, 5G Heterogeneous Network, Heterogeneous Wireless Network, information and communication, circuits