Crystallographic Texture and Group Representations
Chi-Sing Man
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Sonstiges
Beschreibung
This book starts with an introduction to quantitative texture analysis (QTA), which adopts conventions (active rotations, definition of Euler angles, Wigner D-functions) that conform to those of the present-day mathematics and physics literature. Basic concepts (e.g., orientation; orientation distribution function (ODF), orientation density function, and their relationship) are made precise through their mathematical definition. Parts II and III delve deeper into the mathematical foundations of QTA, where the important role played by group representations is emphasized. Part II includes one chapter on generalized QTA based on the orthogonal group, and Part III one on tensorial Fourier expansion of the ODF and tensorial texture coefficients.
This work will appeal to students and practitioners who appreciate a precise presentation of QTA through a unifying mathematical language, and to researchers who are interested in applications of group representations to texture analysis.
Previously published in the Journal of Elasticity, Volume 149, issues 1-2, April, 2022
Kundenbewertungen
Quantitative texture analysis, Harmonic tensors, Orthogonal group, Orientation measure, Orientation distribution function, Tensorial texture coefficients, Orientation space, Harmonic decomposition, Wigner D-functions, Rotations