Machine Learning – kurz & gut

Eine Einführung mit Python, Scikit-Learn und TensorFlow

Oliver Zeigermann, Chi Nhan Nguyen

EPUB
19,90
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

O'Reilly img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Programmiersprachen

Beschreibung

Der kompakte Schnelleinstieg in Machine Learning und Deep Learning - Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps - Anhand konkreter Datensätze lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung - Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler*innenMachine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden folgende Themen behandelt und mit praktischen Beispielen veranschaulicht: - Datenvorbereitung, Feature-Auswahl, Modellvalidierung - Supervised und Unsupervised Learning - Neuronale Netze und Deep Learning - Reinforcement Learning - LLMs – moderne Sprachmodelle - MLOps – Machine Learning für die PraxisAnhand von Beispieldatensätzen lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung. Mit den Codebeispielen kannst du in Jupyter Notebooks experimentieren. Sie basieren auf Python und den Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs hast du einen Überblick über das gesamte Thema und kannst Ansätze einordnen und bewerten. Das Buch vermittelt dir eine solide Grundlage, um erste eigene Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen.

Weitere Titel in dieser Kategorie
Cover Spring Boot 3
François Fernandès
Cover Spring Boot 3
Benedikt Jerat
Cover JavaScript für Dummies
Sebastian Springer
Cover Grundkurs Programmieren in Java
Dennis Schulmeister-Zimolong
Cover Von Java zu C
Carsten Vogt

Kundenbewertungen

Schlagwörter

Neuronale Netze, Algorithmen, LLMs, Maschinelles Lernen, Deep Learning, Unsupervised Learning, Large Language Models, AI, MLOps, ChatGPT, Künstliche Intelligenz, Python, Artificial Intelligence, KI, Machine Learning, Reinforcement Learning