Praktische Statistik für Data Scientists

50+ essenzielle Konzepte mit R und Python

Peter Bruce, Peter Gedeck, Andrew Bruce, et al.

EPUB
39,90
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

O'Reilly img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Programmiersprachen

Beschreibung

Statistische Konzepte aus der Perspektive von Data Scientists erläutert

  • Das Buch stellt die Verbindung zwischen nützlichen statistischen Prinzipien und der heutigen Datenanalyse-Praxis her
  • Ermöglicht Data Scientists, ihr Wissen über Statistik auf ein neues Level zu bringen
  • Übersetzung der 2. Auflage des US-Bestsellers mit Beispielen in Python und R

Statistische Methoden sind ein zentraler Bestandteil der Arbeit mit Daten, doch nur wenige Data Scientists haben eine formale statistische Ausbildung. In Kursen und Büchern über die Grundlagen der Statistik wird das Thema aber selten aus der Sicht von Data Scientists behandelt. Viele stellen daher fest, dass ihnen eine tiefere statistische Perspektive auf ihre Daten fehlt.
Dieses praxisorientierte Handbuch mit zahlreichen Beispielen in Python und R erklärt Ihnen, wie Sie verschiedene statistische Methoden speziell in den Datenwissenschaften anwenden. Es zeigt Ihnen auch, wie Sie den falschen Gebrauch von statistischen Methoden vermeiden können, und gibt Ratschläge, welche statistischen Konzepte für die Datenwissenschaften besonders relevant sind. Wenn Sie mit R oder Python vertraut sind, ermöglicht diese zugängliche, gut lesbare Referenz es Ihnen, Ihr statistisches Wissen für die Praxis deutlich auszubauen.

Weitere Titel in dieser Kategorie
Cover Spring Boot 3
François Fernandès
Cover Spring Boot 3
Benedikt Jerat
Cover JavaScript für Dummies
Sebastian Springer
Cover Grundkurs Programmieren in Java
Dennis Schulmeister-Zimolong
Cover Von Java zu C
Carsten Vogt

Kundenbewertungen

Schlagwörter

Big Data, Datenanalyse, Python, R, Algorithmen, Wahrscheinlichkeit, Datenklassifikation, Random Forest, Regression, Data Mining, Statistik, Unsupervised Learning, Machine Learning, Data Science