Corporate Data Quality
Boris Otto, Hubert Österle
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Ratgeber / Recht, Beruf, Finanzen
Beschreibung
Data is the foundation of the digital economy. Industry 4.0 and digital services are producing so far unknown quantities of data and make new business models possible. Under these circumstances, data quality has become the critical factor for success. This book presents a holistic approach for data quality management and presents ten case studies about this issue. It is intended for practitioners dealing with data quality management and data governance as well as for scientists. The book was written at the Competence Center Corporate Data Quality (CC CDQ) in close cooperation between researchers from the University of St. Gallen and Fraunhofer IML as well as many representatives from more than 20 major corporations. Chapter 1 introduces the role of data in the digitization of business and society and describes the most important business drivers for data quality. It presents the Framework for Corporate Data Quality Management and introduces essential terms and concepts. Chapter 2 presents practical, successful examples of the management of the quality of master data based on ten cases studies that were conducted by the CC CDQ. The case studies cover every aspect of the Framework for Corporate Data Quality Management. Chapter 3 describes selected tools for master data quality management. The three tools have been distinguished through their broad applicability (method for DQM strategy development and DQM maturity assessment) and their high level of innovation (Corporate Data League). Chapter 4 summarizes the essential factors for the successful management of the master data quality and provides a checklist of immediate measures that should be addressed immediately after the start of a data quality management project. This guarantees a quick start into the topic and provides initial recommendations for actions to be taken by project and line managers. Please also check out the book's homepage at cdq-book.org/
Kundenbewertungen
Creative Commons, Datenqualität, Datenqualitätsmanagement, Stammdaten, Best Practice, Data Quality, Data Quality Management, Digitalisierung, Data Governance, Master Data Management