img Leseprobe Leseprobe

Die Bieberbach'sche Vermutung. Beweis und Erläuterung

Andre Herrmann

PDF
15,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

GRIN Verlag img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Analysis

Beschreibung

Bachelorarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Analysis, Note: 1,7, Heinrich-Heine-Universität Düsseldorf (Angewandte Mathematik), Sprache: Deutsch, Abstract: In dieser Arbeit wird eine Beweismethode behandelt, die 1991 durch Weinstein veröffentlicht wurde. Diese setzt die Milin-Vermutung voraus, die die Bieberbachsche Vermutung impliziert. Wichtige Hilfsmittel zum Beweis hierzu sind einparametrige Familien schlichter Funktionen und die Löwner Differentialgleichung. Dabei führt der Beweis der Milin-Vermutung auf einige Sonderfälle der Jacobi-Polynome und deren erzeugende Funktion zurück. Ludwig Bieberbach (1896-1982) wurde 1921 Nachfolger von C. Carathéodory an der Berliner Universität. Er studierte in Heidelberg und Göttingen. Zur komplexen Funktionentheorie leistete er bedeutende Beiträge. Er war Verfasser der berühmten Bieberbachschen Vermutung, welche besagt, dass die Koeffizienten an einer biholomorphen Funktion die in der Einheitskreisscheibe definiert ist, der Ungleichung genügen. Bieberbach konnte dies für n = 2 beweisen. Erst 1985 wurde die Vermutung von L. De Branges Bourcia für alle n bewiesen.

Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie

Kundenbewertungen

Schlagwörter

Mathe, Weinstein, Bieberbach