img Leseprobe Leseprobe

Seitenwege in der Mathematikgeschichte

Potentiale und Grenzen alternativer Zugänge

Christoph Kirfel

PDF
39,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Berlin Heidelberg img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Allgemeines, Lexika

Beschreibung

In diesem Buch werden Methoden aus der Geschichte der Mathematik dargestellt, die nicht zu Standardmethoden geworden sind oder es gar bis in klassische Schulbücher geschafft haben. Diese alternativen Zugänge waren oftmals zum Zeitpunkt ihrer Entstehung aktuell und im Gespräch, haben dann aber gegenüber den heutigen Standardmethoden an Aufmerksamkeit verloren und sind schließlich in Vergessenheit geraten. Oftmals enthalten diese Methoden noch ein ungenutztes Potential: Es lohnt sich, sie weiterzuentwickeln und zu entdecken, wo genau sich ihre Grenzen befinden. Das Buch möchte insbesondere angehenden Lehrkräften einen Blick über die üblichen Lehrinhalte hinaus ermöglichen und inhaltliche Anregungen für die Arbeit mit interessierten und begabten Schülerinnen und Schülern liefern. Archimedes etwa entwickelte eine Methode zur Berechnung des Flächeninhaltes eines Parabelsegmentes, die gewissermaßen ein Stück der Integralrechnung vorwegnimmt. Archimedes' Methode entwickelte sich aber nicht zur Standardmethode, wie man sie in heutigen Lehrbüchern wiederfindet. Dort findet man stattdessen die Methoden, die von Newton und Leibnitz entworfen wurden. Dieses Buch entwickelt die Archimedische Methode weiter und zeigt ihr „Restpotential“ auf: Andere Kurven, nicht nur Parabeln, lassen sich ähnlich angreifen und es ist interessant und lehrreich zu sehen, wie weit sich Archimedes' Methode entwickeln lässt und wo sie dann letztlich an ihre Grenzen stößt.

Weitere Titel in dieser Kategorie
Cover Kurt Gödel
William D. Brewer
Cover Die antike Mathematik
Dietmar Herrmann

Kundenbewertungen

Schlagwörter

Historische Integrationsmethoden, Archimedes Methode, Alternative Zugänge zur Mathematik, Integrationsmethoden, Indisches Wurzelziehen