Fixpunkte und Nullstellen
Klartext für Nichtmathematiker
Guido Walz
PDF
4,48 €
Amazon
iTunes
Thalia.de
Hugendubel
Bücher.de
ebook.de
kobo
Osiander
Google Books
Barnes&Noble
bol.com
Legimi
yourbook.shop
Kulturkaufhaus
ebooks-center.de
* Affiliatelinks/Werbelinks
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik
Beschreibung
Dieses Buch vermittelt in leicht zugänglicher Sprache Methoden zur numerischen Berechnung von Fixpunkten und Nullstellen reeller Funktionen mithilfe von Iterationsverfahren. Insbesondere das Banach-Verfahren zur Fixpunktbestimmung sowie das Newton-Verfahren, eines der besten numerischen Verfahren zur Nullstellenberechnung von Funktionen, werden ausführlich dargestellt. In einem abschließenden Kapitel werden Anwendungen dieser Verfahren behandelt. Unter anderen geht es dabei um die beliebig genaue Berechnung von Wurzeln jeder Ordnung.
Da sich der Text ausdrücklich (auch) an Nichtmathematiker und Nichtmathematikerinnen wendet, ist er bewusst in allgemein verständlicher Sprache gehalten, um die Leser nicht durch übertriebene Fachsprache abzuschrecken; schließlich soll es sich ebenfalls laut Untertitel um „Klartext“ handeln. Zahlreiche Beispiele machen die einzelnen Themen leicht verständlich.
Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Kundenbewertungen
Schlagwörter
Fixpunktiteration nach Banach, Numerische Iterationsverfahren, Bisektionsverfahren, Newton-Verfahren, Numerische Berechnung von Nullstellen, Numerische Berechnung von Fixpunkten