img Leseprobe Leseprobe

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Design, Analysis and Matlab Simulation

Jinkun Liu

PDF
ca. 149,79
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Berlin img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Elektronik, Elektrotechnik, Nachrichtentechnik

Beschreibung

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.
 
This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation.

Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.

Weitere Titel in dieser Kategorie
Cover Open RAN
Vladimir Yanover

Kundenbewertungen

Schlagwörter

RBF (Radial Basis Function), MATLAB Simulation, Neural Adaptive Control, Mechanical Systems, Neural Network