Local Moduli and Singularities

Olav Arnfinn Laudal, Gerhard Pfister

PDF
ca. 29,64

Springer Berlin Heidelberg img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Mathematik

Beschreibung

This research monograph sets out to study the notion of a local moduli suite of algebraic objects like e.g. schemes, singularities or Lie algebras and provides a framework for this. The basic idea is to work with the action of the kernel of the Kodaira-Spencer map, on the base space of a versal family. The main results are the existence, in a general context, of a local moduli suite in the category of algebraic spaces, and the proof that, generically, this moduli suite is the quotient of a canonical filtration of the base space of the versal family by the action of the Kodaira-Spencer kernel. Applied to the special case of quasihomogenous hypersurfaces, these ideas provide the framework for the proof of the existence of a coarse moduli scheme for plane curve singularities with fixed semigroup and minimal Tjurina number . An example shows that for arbitrary the corresponding moduli space is not, in general, a scheme. The book addresses mathematicians working on problems of moduli, in algebraic or in complex analytic geometry. It assumes a working knowledge of deformation theory.

Weitere Titel in dieser Kategorie
Cover Graph Coloring
Maurice Clerc
Cover Graph Coloring
Maurice Clerc
Cover Étale Cohomology
James S. Milne
Cover Calculus 2 Simplified
Oscar E. Fernandez
Cover Mathematics for Engineers
Francesc Pozo Montero
Cover Mathematics for Engineers
Francesc Pozo Montero
Cover Hybrid Nanofluids
Shriram S. Sonawane
Cover Hybrid Nanofluids
Shriram S. Sonawane

Kundenbewertungen