img Leseprobe Leseprobe

Biologically Inspired Algorithms for Financial Modelling

Michael O'Neill, Anthony Brabazon

PDF
ca. 96,29
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Berlin img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

Predicting the future for financial gain is a difficult, sometimes profitable activity. The focus of this book is the application of biologically inspired algorithms (BIAs) to financial modelling.

In a detailed introduction, the authors explain computer trading on financial markets and the difficulties faced in financial market modelling. Then Part I provides a thorough guide to the various bioinspired methodologies – neural networks, evolutionary computing (particularly genetic algorithms and grammatical evolution), particle swarm and ant colony optimization, and immune systems. Part II brings the reader through the development of market trading systems. Finally, Part III examines real-world case studies where BIA methodologies are employed to construct trading systems in equity and foreign exchange markets, and for the prediction of corporate bond ratings and corporate failures.

The book was written for those in the finance community who want to apply BIAs in financial modelling, and for computer scientists who want an introduction to this growing application domain.

Kundenbewertungen

Schlagwörter

Finance, financial trading, modeling, linear optimization, genetic algorithms (GAs), evolutionary methodologies, Rating, ant colony systems, algorithms, calculus, computer trading, grammatical evolution (GE), biologically inspired algorithms (BIAs), quantitative finance, optimization, model