img Leseprobe Leseprobe

Functional Materials for Electrocatalytic Energy Conversion

Zhicheng Zhang (Hrsg.), Meiting Zhao (Hrsg.), Yuchen Qin (Hrsg.)

EPUB
160,99

Wiley-VCH img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Chemie

Beschreibung

Build the energy sources of the future with these advanced materials

The search for clean and sustainable energy sources capable of meeting global needs is the defining challenge of the current era. Renewable sources point the way forward, but their intrinsic instability creates an increased urgency for the development of large-scale energy storage systems comprised of stable, durable materials. An understanding of functional materials of this kind and the catalytic processes in which they’ll necessarily be incorporated has never been more essential.

Functional Materials for Electrocatalytic Energy Conversion provides a systematic overview of these materials and their role in electrocatalytic conversion processes. Covering all major energy-producing reactions, as well as preparation methods and physiochemical properties of specific materials, it constitutes a major contribution to the global renewable-energy project.

Functional Materials for Electrocatalytic Energy Conversion readers will also find:

  • Guidance for the design and construction of functional materials
  • Detailed treatment of reaction processes including hydrogen evolution, oxygen reduction, oxygen evolution, and many more
  • Critical discussion of cutting-edge processes still under development, such as liquid fuel oxidation and oxygen reduction

Functional Materials for Electrocatalytic Energy Conversion is ideal for materials scientists, electrochemists, catalytic chemists, and any other researchers working with energy conversion and storage.

Weitere Titel in dieser Kategorie
Cover Green Chemistry
Mike Lancaster
Cover Polyurethane Foams
Gerard G. Dumancas
Cover Handbook of GC-MS
Hans-Joachim Hubschmann

Kundenbewertungen

Schlagwörter

climate change, functional nanomaterials, sustainable energy, Renewable energy, clean energy, electrocatalysis, oxygen evolution, oxygen reduction, photovoltaic processes, electrocatalytic biomass conversion, liquid fuel oxidation