img Leseprobe Leseprobe

Artificial Adaptive Systems Using Auto Contractive Maps

Theory, Applications and Extensions

Masoud Asadi-Zeydabadi, Francis Newman, Giulia Massini, et al.

PDF
ca. 96,29
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Allgemeines, Lexika

Beschreibung

This book offers an introduction to artificial adaptive systems and a general model of the relationships between the data and algorithms used to analyze them. It subsequently describes artificial neural networks as a subclass of artificial adaptive systems, and reports on the backpropagation algorithm, while also identifying an important connection between supervised and unsupervised artificial neural networks. 

The book’s primary focus is on the auto contractive map, an unsupervised artificial neural network employing a fixed point method versus traditional energy minimization. This is a powerful tool for understanding, associating and transforming data, as demonstrated in the numerous examples presented here. A supervised version of the auto contracting map is also introduced as an outstanding method for recognizing digits and defects. In closing, the book walks the readers through the theory and examples of how the auto contracting map can be used in conjunction with another artificial neural network, the “spin-net,” as a dynamic form of auto-associative memory.


Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Cover Design Review Based on Failure Mode
Mohammed Hamed Ahmed Soliman

Kundenbewertungen

Schlagwörter

Fuzzy Data Sets, Spin Network, Fixed Point Theory, Adaptive Algorithms, Associative Memory, Auto-CM Neural Network, Hybrid Artificial Neural Networks, Dataset Transformation, Graph Theoretic Methods, Deep Learning, Data Driven Machine Learning, Content Addressable Memory, Auto Associative ANNs, Auto-CM Weights Matrix