Approximate Solutions of Common Fixed-Point Problems
Alexander J. Zaslavski
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Springer International Publishing
Naturwissenschaften, Medizin, Informatik, Technik / Sonstiges
Beschreibung
This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant.
Beginning with an introduction, this monograph moves on to study:
· dynamic string-averaging methods for common fixed point problems in a Hilbert space
· dynamic string methods for common fixed point problems in a metric space<
· dynamic string-averaging version of the proximal algorithm
· common fixed point problems in metric spaces· common fixed point problems in the spaces with distances of the Bregman type
· a proximal algorithm for finding a common zero of a family of maximal monotone operators
· subgradient projections algorithms for convex feasibility problems in Hilbert spaces
Kundenbewertungen
string-averaging methods, computational errors, dynamic string-averaging, approximate solutions, Hilbert space, radiation therapy planning, computed tomography, convergence solution, behavior of algorithms, Bregman type, iterative methods, fixed point problems