img Leseprobe Leseprobe

1670–1673. Infinitesimalmathematik

Eberhard Knobloch (Hrsg.), Walter S. Contro (Hrsg.)

PDF
ca. 380,00
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

De Gruyter img Link Publisher

Geisteswissenschaften, Kunst, Musik / Renaissance, Aufklärung

Beschreibung

Der vorliegende Band umfasst die fast ausnahmslos undatierten Studien, Entwürfe, Aufzeichnungen vom März bis Ende 1673 zur Infinitesimalrechnung, also zur unmittelbaren Vorgeschichte der Erfindung des Calculus. Ein großer Teil der von Dietrich Mahnke 1926 genauer studierten Leibnizschen Aufzeichnungen, um die Entdeckungsgeschichte der höheren Analysis aufzuklären, wird hier erstmalig veröffentlicht. Durch sorgfältiges, schöpferisches Studium von Autoren wie H. Fabri, Chr. Huygens, N. Mercator, R. Fr. de Sluse, J. Gregory, B. Pascal und J. Wallis arbeitet sich Leibniz in die Infinitesimalmathematik ein. Er entwickelt fruchtbare Begriffe wie den der Funktion, des unendlich Kleinen, des charakteristischen Dreiecks. Von entscheidender Bedeutung ist die Ableitung des Transmutationssatzes, Leibniz’ erster herausragender Entdeckung auf dem Gebiet der Infinitesimalgeometrie. Das rechtwinklige Dreieck mit unendlich kleinen Seiten, das er das "charakteristische" nennt, erlaubt ihm die Ableitung von über 150 Sätzen. Er spricht von der "Trigonometrie des nicht Zuordbaren". Ein zweites herausragendes Ergebnis ist die Entdeckung der arithmetischen Kreisquadratur, d. h. einer konvergenten, unendlichen Reihe von rationalen Zahlen, deren Summe die Kreisfläche ergibt. Am Anfang dazu steht seine Einsicht in den Zusammenhang zwischen Kreisquadratur und Pascalschen Sätzen über die Summe der sinus und der Werte für 1– cosinus. Im August 1673 durchschaut er die Erzeugung einer arithmetischen Quadratur und die Wesens-gleichheit von Rektifikationen, Quadraturen und umgekehrten Tagentenkonstruktionen. Von hohem wissenschaftlichen Interesse sind Leibniz’ Studien zu bestimmten höheren Kurven: Konchoiden, Zykloiden, Zissoiden, Paraboloiden und Hyperboloiden. Seine programmatischen Untersuchungen zur Arithme-tik des Unendlichen und Analysis der Indivisiblen sind wichtige Beiträge zur Grundlagen- und Methodenproble-matik der Mathematik.

Rezensionen

Nicollò Guicciardini in: NTM - Zeitschrift für Geschichte der Wissenschaft, Technik und Medizin; 18 (2010) 4
"One of the most important recent events in the world of Leibnizian studies was the publication in 2008 of volumes 4 and 5 of Leibniz's Mathematische Schriften [...]. These two volumes are a critical edition of the extant papers on infinitesimal calculus Leibniz penned in the eventful years of his Parisian sojourn."

Kundenbewertungen