img Leseprobe Leseprobe

Deep Learning for Seismic Data Enhancement and Representation

Jiefu Chen, Xuqing Wu, Wenyi Hu, et al.

PDF
ca. 181,89
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Nature Switzerland img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Geologie

Beschreibung

Seismic imaging is a key component of subsurface exploration, and it depends on a high-quality seismic data acquisition system with effective seismic processing algorithms. Seismic data quality concerns various factors such as acquisition design, environmental constraints, sampling resolution, and noises. The focus of this book is to investigate efficient seismic data representation and signal enhancement solutions by leveraging the powerful feature engineering capability of deep learning.

The book delves into seismic data representation and enhancement issues, ranging from seismic acquisition design to subsequent quality improvement and compression technologies. Given the challenges of obtaining suitable labeled training datasets for seismic data processing problems, we concentrate on exploring deep learning approaches that eliminate the need for labels. We combined novel deep learning techniques with conventional seismic data processing methods, and construct networks and frameworks tailored for seismic data processing. The editors and authors of this book come from both academia and industry with hands-on experiences in seismic data processing and imaging.

Weitere Titel in dieser Kategorie
Cover Reefs of Time
Lisa S. Gardiner
Cover Intraterrestrials
Karen G. Lloyd

Kundenbewertungen

Schlagwörter

Seismic Interpolation, Seismic Data Processing, Deep Learning on Signal Processing, Seismic Deblending, Machine Learning, Seismic Data Compression