img Leseprobe Leseprobe

Social Network Analysis and Mining Applications in Healthcare and Anomaly Detection

Sleiman Alhajj (Hrsg.), Kashfia Sailunaz (Hrsg.), Min-Yuh Day (Hrsg.), Mehmet Kaya (Hrsg.)

PDF
ca. 149,79
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Nature Switzerland img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

This book is an excellent source of knowledge for readers interested in the latest developments in social network analysis and mining, particularly with applications in healthcare and anomaly detection. It covers topics such as sensitivity to noise in features, enhancing fraud detection in financial systems, measuring the echo-chamber phenomenon, detecting comorbidity, and evaluating the effectiveness of mitigative and preventative actions on viral spread in small communities using agent-based stochastic simulations. Additionally, it discusses predicting behavior, measuring and identifying influence, analyzing the impact of COVID-19 on various social aspects, and using UNet for handling various skin conditions.

This book helps readers develop their own perspectives on adapting social network concepts to various applications. It also demonstrates how to use various machine learning techniques for tackling challenges in social network analysis and mining.

Weitere Titel in dieser Kategorie
Cover Pro WordPress
Sivaraj Selvaraj
Cover AI-Powered Ecommerce
Ramgopal Prajapat

Kundenbewertungen

Schlagwörter

Deep Learning, Behavior Analysis, Fraud Detection, Machine Learning, Trending Topics, Social Media, Network Analysis in Healthcare, Fake News