img Leseprobe Leseprobe

q-RASAR

A Path to Predictive Cheminformatics

Arkaprava Banerjee, Kunal Roy

PDF
ca. 48,14
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Nature Switzerland img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Theoretische Chemie

Beschreibung

This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains.


Weitere Titel in dieser Kategorie
Cover Photochemistry
Stefano Crespi
Cover Walter Kohn
David C Clary
Cover Click Chemistry
Sanchayita Rajkhowa
Cover q-RASAR
Arkaprava Banerjee

Kundenbewertungen

Schlagwörter

Chemometrics, q-RASAR, Machine Learning, QSAR, Read-across, Validation, Predictions, Data Gap Filling, Cheminformatics