img Leseprobe Leseprobe

Communication Efficient Federated Learning for Wireless Networks

Shuguang Cui, Mingzhe Chen

PDF
ca. 149,79
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Nature Switzerland img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Datenkommunikation, Netzwerke

Beschreibung

This book provides a comprehensive study of Federated Learning (FL) over wireless networks. It consists of three main parts: (a) Fundamentals and preliminaries of FL, (b) analysis and optimization of FL over wireless networks, and (c) applications of wireless FL for Internet-of-Things systems. In particular, in the first part, the authors provide a detailed overview on widely-studied FL framework. In the second part of this book, the authors comprehensively discuss three key wireless techniques including wireless resource management, quantization, and over-the-air computation to support the deployment of FL over realistic wireless networks. It also presents several solutions based on optimization theory, graph theory and machine learning to optimize the performance of FL over wireless networks. In the third part of this book, the authors introduce the use of wireless FL algorithms for autonomous vehicle control and mobile edge computing optimization. 

Machine learning and data-driven approaches have recently received considerable attention as key enablers for next-generation intelligent networks. Currently, most existing learning solutions for wireless networks rely on centralizing the training and inference processes by uploading data generated at edge devices to data centers. However, such a centralized paradigm may lead to privacy leakage, violate the latency constraints of mobile applications, or may be infeasible due to limited bandwidth or power constraints of edge devices. To address these issues, distributing machine learning at the network edge provides a promising solution, where edge devices collaboratively train a shared model using real-time generated mobile data. The avoidance of data uploading to a central server not only helps preserve privacy but also reduces network traffic congestion as well as communication cost. Federated learning (FL) is one of most important distributed learning algorithms. In particular, FL enables devices to train a shared machine learning model while keeping data locally. However, in FL, training machine learning models requires communication between wireless devices and edge servers over wireless links. Therefore, wireless impairments such as noise, interference, and uncertainties among wireless channel states will significantly affect the training process and performance of FL. For example, transmission delay can significantly impact the convergence time of FL algorithms. In consequence, it is necessary to optimize wireless network performance for the implementation of FL algorithms.

This book targets researchers and advanced level students in computer science and electrical engineering. Professionals working in signal processing and machine learning will also buy this book.


Weitere Titel in dieser Kategorie
Cover Desktop Witness
Michael A. Caloyannides
Cover Inferno Programming with Limbo
Phillip Stanley-Marbell
Cover Cisco Catalyst SD-WAN
Dustin Schuemann
Cover Cisco Catalyst SD-WAN
Dustin Schuemann
Cover Security of my Social Networks v2.0
Carrazana Calzadilla Edwin Carrazana Calzadilla
Cover Cloud Native Go
Matthew A. Titmus
Cover Cloud Native Go
Matthew A. Titmus
Cover Future Networking Essentials
Dr. Anil Kumar Rangisetti

Kundenbewertungen

Schlagwörter

Federated learning, Distributed learning, Mobile edge computing, Quantization, Resource Allocation, Autonomous vehicle control, Over the air computation