Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R
Joseph F. Hair Jr., Christian M. Ringle, Nicholas P. Danks, et al.
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Springer International Publishing
Sozialwissenschaften, Recht, Wirtschaft / Wirtschaft
Beschreibung
Partial least squares structural equation modeling (PLS-SEM) has become a standard approach for analyzing complex inter-relationships between observed and latent variables. Researchers appreciate the many advantages of PLS-SEM such as the possibility to estimate very complex models and the method's flexibility in terms of data requirements and measurement specification.This practical open access guide provides a step-by-step treatment of the major choices in analyzing PLS path models using R, a free software environment for statistical computing, which runs on Windows, macOS, and UNIX computer platforms. Adopting the R software s SEMinR package, which brings a friendly syntax to creating and estimating structural equation models, each chapter offers a concise overview of relevant topics and metrics, followed by an in-depth description of a case study. Simple instructions give readers the how-tos of using SEMinR to obtain solutions and document their results. Rules ofthumb in every chapter provide guidance on best practices in the application and interpretation of PLS-SEM.