img Leseprobe Leseprobe

Modeling Information Diffusion in Online Social Networks with Partial Differential Equations

Feng Wang, Haiyan Wang, Kuai Xu, et al.

PDF
ca. 69,54
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Analysis

Beschreibung

The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.

Weitere Titel in dieser Kategorie
Cover Trace Inequalities
Airat M. Bikchentaev
Cover Digital SAT 2024
Azhar ul Haque Sario

Kundenbewertungen

Schlagwörter

Social movement, Spatio-temporal modeling, Partial Differential Equations, Influenza prediction, Information Diffusion, Logistic Equations, Twitter, Social Media, Spectral Graph Clustering, Online Social Networks, Reaction-Diffusion Equations