img Leseprobe Leseprobe

Fuzzy System Identification and Adaptive Control

Gang Tao, Bin Jiang, Ruiyun Qi, et al.

PDF
ca. 139,09
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Elektronik, Elektrotechnik, Nachrichtentechnik

Beschreibung

This book provides readers with a systematic and unified framework for identification and adaptive control of Takagi–Sugeno (T–S) fuzzy systems. Its design techniques help readers applying these powerful tools to solve challenging nonlinear control problems. The book embodies a systematic study of fuzzy system identification and control problems, using T–S fuzzy system tools for both function approximation and feedback control of nonlinear systems. Alongside this framework, the book also:

  • introduces basic concepts of fuzzy sets, logic and inference system;
  • discusses important properties of T–S fuzzy systems;
  • develops offline and online identification algorithms for T–S fuzzy systems;
  • investigates the various controller structures and corresponding design conditions for adaptive control of continuous-time T–S fuzzy systems;
  • develops adaptive control algorithms for discrete-time input–output formT–S fuzzy systems with much relaxed design conditions, and discrete-time state-space T–S fuzzy systems; and
  • designs stable parameter-adaptation algorithms for both linearly and nonlinearly parameterized T–S fuzzy systems.
The authors address adaptive fault compensation problems for T–S fuzzy systems subject to actuator faults. They cover a broad spectrum of related technical topics and to develop a substantial set of adaptive nonlinear system control tools.

Fuzzy System Identification and Adaptive Control helps engineers in the mechanical, electrical and aerospace fields, to solve complex control design problems. The book can be used as a reference for researchers and academics in nonlinear, intelligent, adaptive and fault-tolerant control.

Kundenbewertungen

Schlagwörter

T–S Fuzzy Prediction model, Minimum Phase T–S Fuzzy System, Takagi-Sugeno(T–S) Fuzzy System, MIMO T–S Fuzzy System, Input–output T–S Fuzzy System, Dynamic Fuzzy System, Fuzzy Identification, Model-based Design, Adaptive Fuzzy Control