img Leseprobe Leseprobe

Adaptive and Intelligent Control of Microbial Fuel Cells

Valentina E. Balas, Ravi Patel, Dipankar Deb, et al.

PDF
ca. 96,29
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Allgemeines, Lexika

Beschreibung

This book addresses a range of solutions and effective control techniques for Microbial Fuel Cells (MFCs), intended as a response to the increased energy consumption and wastewater production stemming from globalization. It describes the fundamentals of MFCs and control-oriented mathematical models, and provides detailed information on uncertain parameters. Various control techniques like robust control with LMI, adaptive backstepping control, and exact linearization control are developed for different mathematical models.

In turn, the book elaborates on the basics of adaptive control, presenting several methods in detail. It also demonstrates how MFCs can be developed at the laboratory level, equipping readers to develop their own MFCs for experimental purposes. In closing, it develops a transfer function model for MFCs by combining a system identification technique and model reference adaptive control techniques. By addressing one of the most promising sources of clean and renewable energy, this book provides a viable solution for meeting the world’s increasing energy demands.


Weitere Titel in dieser Kategorie
Cover Design Review Based on Failure Mode
Mohammed Hamed Ahmed Soliman

Kundenbewertungen

Schlagwörter

Microbial Fuel Cells, Linear Matrix Inequality (LMI), Biological Fuel Cells, Control-oriented Modeling, Two Chambers, Single Chamber, Estimation, Norm Bounded Uncertainty, Uncertain Parameters, Adaptive Control