img Leseprobe Leseprobe

Mobile Data Mining

Hanghang Tong, Xing Su, Yuan Yao, et al.

PDF
ca. 53,49
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Datenkommunikation, Netzwerke

Beschreibung

This SpringerBrief presents a typical life-cycle of mobile data mining applications, including:

  • data capturing and processing which determines what data to collect, how to collect these data, and how to reduce the noise in the data based on smartphone sensors
  •  feature engineering which extracts and selects features to serve as the input of algorithms based on the collected and processed data
  •  model and algorithm design
In particular, this brief concentrates on the model and algorithm design aspect, and explains three challenging requirements of mobile data mining applications: energy-saving, personalization, and real-time

 Energy saving is a fundamental requirement of mobile applications, due to the limited battery capacity of smartphones. The authors  explore the existing practices in the methodology level (e.g. by designing hierarchical models) for saving energy. Another fundamental requirement of mobile applications is personalization.  Most of the existing methods tend to train generic models for all users, but the authors provide existing personalized treatments for mobile applications, as the behaviors may differ greatly from one user to another in many mobile applications. The third requirement is real-time. That is, the mobile application should return responses in a real-time manner, meanwhile balancing effectiveness and efficiency.

 This SpringerBrief targets data mining and machine learning researchers and practitioners working in these related fields. Advanced level students studying computer science and electrical engineering will also find this brief useful as a study guide. 

Weitere Titel in dieser Kategorie
Cover Desktop Witness
Michael A. Caloyannides
Cover Inferno Programming with Limbo
Phillip Stanley-Marbell
Cover Wi-Fi 7
Gang Cheng

Kundenbewertungen

Schlagwörter

data capturing, online model, data denoising, Mobile data, personalization, data mining, data segmentation, hierarchical model, travel mode detection, energy-saving, online update, feature selection, indoor localization, real-time, personalized model, activity recognition, smartphone sensors, feature extraction