Fuzzy Filter-Based State of Energy Estimation for Lithium-Ion Batteries
Josep M. Guerrero, Shunli Wang, Yujie Wang, et al.
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Wärme-, Energie- und Kraftwerktechnik
Beschreibung
Awareness of the safety issues of lithium-ion batteries is crucial in the development of new energy technologies, and real-time and high-precision State of Energy (SOE) estimation is not only a prerequisite for battery safety, but also serves as the basis for predicting the remaining driving range of electric vehicles and aircrafts. In order to achieve real-time and accurate estimation of the energy state of lithium-ion batteries, this book improves the calculation method of the open-circuit voltage in the traditional second-order RC equivalent circuit model. It also combines a fuzzy controller and a dual-weighted multi-innovation algorithm to optimize the traditional Centralized Kalman Filter (CKF) algorithm in terms of the aspects of convergence speed, estimation accuracy, and algorithm robustness. This enables the precise estimation of SOE and the maximum available energy. The content of this book provides theoretical support for the development of new energy initiatives.