Neural Network-Based State-of-Charge and State-of-Health Estimation

Josep M. Guerrero, Qi Huang, Shunli Wang, et al.

PDF
ca. 111,00
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Cambridge Scholars Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Wärme-, Energie- und Kraftwerktechnik

Beschreibung

To deal with environmental deterioration and energy crises, developing clean and sustainable energy resources has become the strategic goal of the majority of countries in the global community. Lithium-ion batteries are the modes of power and energy storage in the new energy industry, and are also the main power source of new energy vehicles. State-of-charge (SOC) and state-of-health (SOH) are important indicators to measure whether a battery management system (BMS) is safe and effective. Therefore, this book focuses on the co-estimation strategies of SOC and SOH for power lithium-ion batteries. The book describes the key technologies of lithium-ion batteries in SOC and SOH monitoring and proposes a collaborative optimization estimation strategy based on neural networks (NN), which provide technical references for the design and application of a lithium-ion battery power management system. The theoretical methods in this book will be of interest to scholars and engineers engaged in the field of battery management system research.

Weitere Titel in dieser Kategorie

Kundenbewertungen