R Data Science Quick Reference
A Pocket Guide to APIs, Libraries, and Packages
Thomas Mailund
PDF
ca. 46,99 €
Amazon
iTunes
Thalia.de
Hugendubel
Bücher.de
ebook.de
kobo
Osiander
Google Books
Barnes&Noble
bol.com
Legimi
yourbook.shop
Kulturkaufhaus
ebooks-center.de
* Affiliatelinks/Werbelinks
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Programmiersprachen
Beschreibung
In this handy, practical book you will cover each concept concisely, with many illustrative examples. You'll be introduced to several R data science packages, with examples of how to use each of them.
In this book, you’ll learn about the following APIs and packages that deal specifically with data science applications: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more.
What You Will Learn
- Import data with readr
- Work with categories using forcats, time and dates with lubridate, and strings with stringr
- Format data using tidyr and then transform that data using magrittr and dplyr Write functions with R for data science, data mining, and analytics-based applications
- Visualize data with ggplot2 and fit data to models using modelr
Who This Book Is For
Programmers new to R's data science, data mining, and analytics packages. Some prior coding experience with R in general is recommended.
Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Kundenbewertungen
Schlagwörter
magrittr, analytics, modelr, tibble, knitr, R, broom, purrr, ggplot, stingr, tidyr, readr, markdown, lubridate, data science, RMarkdown, shiny, dplyr, forcats