Machine Learning Using R

Karthik Ramasubramanian, Abhishek Singh

PDF
ca. 42,79
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Apress img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

Examine the latest technological advancements in building a scalable machine learning model with Big Data using R. This book shows you how to work with a machine learning algorithm and use it to build a ML model from raw data.

All practical demonstrations will be explored in R, a powerful programming language and software environment for statistical computing and graphics. The various packages and methods available in R will be used to explain the topics. For every machine learning algorithm covered in this book, a 3-D approach of theory, case-study and practice will be given. And where appropriate, the mathematics will be explained through visualization in R. All the images are available in color and hi-res as part of the code download.

This new paradigm of teaching machine learning will bring about a radical change in perception for many of those who think this subject is difficult to learn. Though theory sometimes looks difficult, especially when there is heavy mathematics involved, the seamless flow from the theoretical aspects to example-driven learning provided in this book makes it easy for someone to connect the dots..


What You'll Learn 

  • Use the model building process flow
  • Apply theoretical aspects of machine learning
  • Review industry-based cae studies
  • Understand ML algorithms using R
  • Build machine learning models using Apache Hadoop and Spark

Who This Book is For

Data scientists, data science professionals and researchers in academia who want to understand the nuances of machine learning approaches/algorithms along with ways to see them in practice using R. 

The book will also benefit the readers who want to understand the technology behind implementing a scalable machine learning model using Apache Hadoop, Hive, Pig and Spark.

Weitere Titel von diesem Autor
Karthik Ramasubramanian
Weitere Titel in dieser Kategorie
Cover Signals and Systems
Fatos Tunay Yarman Vural
Cover Some Future Day
Marc Beckman

Kundenbewertungen

Schlagwörter

Feature Engineering, Machine Learning, Machine Learning Models, Scalable Machine Learning, Data Visualization, Sampling Techniques, Data Exploration