img Leseprobe Leseprobe

Recommender Systems for Learning

Nikos Manouselis, Erik Duval, Katrien Verbert, et al.

PDF
ca. 64,19
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer New York img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Datenkommunikation, Netzwerke

Beschreibung

Technology enhanced learning (TEL) aims to design, develop and test sociotechnical innovations that will support and enhance learning practices of both individuals and organisations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. Since information retrieval (in terms of searching for relevant learning resources to support teachers or learners) is a pivotal activity in TEL, the deployment of recommender systems has attracted increased interest. This brief attempts to provide an introduction to recommender systems for TEL settings, as well as to highlight their particularities compared to recommender systems for other application domains.

Weitere Titel in dieser Kategorie
Cover Desktop Witness
Michael A. Caloyannides
Cover Inferno Programming with Limbo
Phillip Stanley-Marbell
Cover Cisco Catalyst SD-WAN
Dustin Schuemann
Cover Cisco Catalyst SD-WAN
Dustin Schuemann
Cover Security of my Social Networks v2.0
Carrazana Calzadilla Edwin Carrazana Calzadilla
Cover Cloud Native Go
Matthew A. Titmus
Cover Cloud Native Go
Matthew A. Titmus
Cover Future Networking Essentials
Dr. Anil Kumar Rangisetti

Kundenbewertungen

Schlagwörter

Recommender systems, technology enhanced learning (TEL), TEL datasets, recommendation algorithms, personalization