img Leseprobe Leseprobe

Bayesian Models

A Statistical Primer for Ecologists

Mevin B. Hooten, N. Thompson Hobbs

PDF
ca. 62,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Princeton University Press img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / ÷kologie

Beschreibung

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.

Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.

This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.

  • Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians
  • Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more
  • Deemphasizes computer coding in favor of basic principles
  • Explains how to write out properly factored statistical expressions representing Bayesian models

Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Cover Ecological Data
William K. Michener
Cover Bayesian Models
N. Thompson Hobbs
Cover Lectures on Evolution
Thomas Henry Huxley
Cover Tapirs of the World
Rafael Reyna-Hurtado
Cover Brazilian Rhodolith Beds
Marina Nasri Sissini
Cover Aquatic Animal Nutrition
Christian E.W. Steinberg
Cover Tending Nature
Nathalie Gravel

Kundenbewertungen

Schlagwörter

Additive model, Model selection, Tikhonov regularization, Markov chain Monte Carlo, Uncertainty, Chi-squared test, Probability mass function, Ensemble learning, Bayesian, Summary statistics, Kernel density estimation, Normal distribution, Probability distribution, Probability, Bayesian information criterion, Bayesian statistics, Marginal distribution, Generalized linear model, Probability density function, Test statistic, Deviance information criterion, Simple linear regression, Variance, Equation, Free parameter, Stochastic, Hyperparameter, Count data, Prior probability, Linear regression, Identifiability, Monte Carlo algorithm, Bias of an estimator, Accuracy and precision, Statistical power, Parameter, Predictive inference, Meta-analysis, Inference, Stationary distribution, Jeffreys prior, Metropolis–Hastings algorithm, Likelihood-ratio test, Student's t-test, Model checking, Cross-validation (statistics), Diagram (category theory), Inverse-gamma distribution, Likelihood function, Quantile, Latent variable, Bayes factor, Quantity, Estimation, Central limit theorem, Loss function, Posterior probability, Bayesian inference, Conjugate prior, Prediction, Ranking (information retrieval), Iteration, Observational study, Gibbs sampling, Overdispersion, Dummy variable (statistics), Beta distribution, Joint probability distribution, Posterior predictive distribution, Random variable