img Leseprobe Leseprobe

Szegő's Theorem and Its Descendants

Spectral Theory for L2 Perturbations of Orthogonal Polynomials

Barry Simon

EPUB
ca. 179,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Princeton University Press img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Analysis

Beschreibung

This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomials for measures supported on a finite number of intervals on the real line.


In addition to the Szego and Killip-Simon theorems for orthogonal polynomials on the unit circle (OPUC) and orthogonal polynomials on the real line (OPRL), Simon covers Toda lattices, the moment problem, and Jacobi operators on the Bethe lattice. Recent work on applications of universality of the CD kernel to obtain detailed asymptotics on the fine structure of the zeros is also included. The book places special emphasis on OPRL, which makes it the essential companion volume to the author's earlier books on OPUC.

Weitere Titel in dieser Kategorie

Kundenbewertungen

Schlagwörter

Probability measure, Equivalence class, Compact space, Blaschke product, Eigenvalues and eigenvectors, Argument principle, Spectral theorem, Covering space, Variable (mathematics), Torus, Semi-continuity, Subset, Branch point, Meromorphic function, Elliptic function, Existential quantification, QR algorithm, Topology of uniform convergence, Abel's theorem, Special case, Division by zero, Limit point, Jacobi matrix, Mathematical induction, Monotonic function, Cauchy–Schwarz inequality, Integrable system, Asymptote, Absolute continuity, Bijection, Kullback–Leibler divergence, Lebesgue measure, Toda lattice, Schwarz lemma, Triangular matrix, Function (mathematics), Poisson bracket, Jost function, Uniform convergence, Riemann sphere, Continuous function, Green's function, Spectral theory, Orthogonal polynomials, Monic polynomial, Summation, Analytic function, Support (mathematics), Equation, Polynomial, Coefficient, Harmonic measure, Transfer matrix, Calculation, Riemann surface, Plancherel theorem, Theorem, Moment problem, Subgroup, Analytic continuation, Degeneracy (mathematics), Determinant, Essential spectrum, QR decomposition, Riemann mapping theorem, Lecture, Corollary, Taylor series, Dimension, Parameter