img Leseprobe Leseprobe

Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure

A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure

Caleb Kaiser, Kristen Kehrer

EPUB
25,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Wiley img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Sonstiges

Beschreibung

A much-needed guide to implementing new technology in workspaces

From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system—not just shiny new gadget in an otherwise unchanged operational structure. By adopting a data-centric view of the world, you can begin to see unstructured data and LLMs as the foundation upon which you can build countless applications and business solutions. This book explores a whole world of decision making that hasn't been codified yet, enabling you to forge the future using emerging best practices.

  • Gain an understanding of the intersection between large language models and unstructured data
  • Follow the process of building an LLM-powered application while leveraging MLOps techniques such as data versioning and experiment tracking
  • Discover best practices for training, fine tuning, and evaluating LLMs
  • Integrate LLM applications within larger systems, monitor their performance, and retrain them on new data

This book is indispensable for data professionals and business leaders looking to understand LLMs and the entire data science pipeline.

Weitere Titel in dieser Kategorie
Cover The Code of Honor
Paul J. Maurer
Cover Gamification for Resilience
Polinpapilinho F. Katina
Cover Gamification for Resilience
Polinpapilinho F. Katina
Cover Digital Dictionary
Laurence Favier

Kundenbewertungen

Schlagwörter

data science book, machine learning development, business intelligence, llm applications, llm coding, Machine learning, llm book, BI, llm development, llm engineering, LLMs, large language models, ML, prompt engineering, training ai