img Leseprobe Leseprobe

Probabilistic Finite Element Model Updating Using Bayesian Statistics

Applications to Aeronautical and Mechanical Engineering

Ilyes Boulkaibet, Tshilidzi Marwala, Sondipon Adhikari, et al.

PDF
92,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

John Wiley & Sons img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Maschinenbau, Fertigungstechnik

Beschreibung

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: * Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students. * Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.

Weitere Titel in dieser Kategorie
Cover Brakes 2000
David Barton
Cover Rolling Contacts
T. A. Stolarski
Cover Compressors and Their Systems
IMechE (Institution of Mechanical Engineers)
Cover Total Tribology
Rob J. K. Wood

Kundenbewertungen

Schlagwörter

Bayesian Analysis, Statistik, Baustatik u. Baumechanik, Civil Engineering & Construction, Maschinenbau, Statistics, Structural Theory & Structural Mechanics, Bayes-Verfahren, Finite-Element-Methode, Mechanical Engineering, Rechnergestützte / Numerische Verfahren im Maschinenbau, Bauingenieur- u. Bauwesen, Computational / Numerical Methods