Model-Oriented Design of Experiments

Valerii V. Fedorov, Peter Hackl

PDF
ca. 106,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer New York img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik

Beschreibung

This book presents the basic ideas of statistical methods in the design of optimal experiments. This new edition now includes sections on design techniques based on the elemental Fisher information matrices (as opposed to Pearson information/moment matrices), allowing a seamless extension of the design techniques to inferential problems where the shape of distributions is essential for optimal design construction. Topics include designs for nonlinear models, models with random parameters and models with correlated observations, designs for model discrimination and misspecified (contaminated) models, and designs in functional spaces.

The authors avoid technical details, assuming a moderate background in calculus, matrix algebra, and statistics. In many places, however, suggestions are made as to how the ideas presented in this book can be extended and elaborated for use in real scientific research and practical engineering problems.

Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Cover Time Series and Wavelet Analysis
Aluisio de Souza Pinheiro
Cover Active Particles, Volume 4
José Antonio Carrillo
Cover R by Example
Jim Albert

Kundenbewertungen

Schlagwörter

Multivariate responses, Model discrimination, Cost constraints, Design of experiments, Contaminated models, Numerical techniques, Iterated estimators, Linear regression, Constrained design measures, Spatial experiments