Introduction to Classifier Performance Analysis with R

Sutaip L.C. Saw

PDF
ca. 63,03 (Lieferbar ab 03. Dezember 2024)
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

CRC Press img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Wärme-, Energie- und Kraftwerktechnik

Beschreibung

Classification problems are common in business, medicine, science, engineering and other sectors of the economy. Data scientists and machine learning professionals solve these problems through the use of classifiers. Choosing one of these data driven classification algorithms for a given problem is a challenging task. An important aspect involved in this task is classifier performance analysis (CPA). Introduction to Classifier Performance Analysis with R provides an introductory account of commonly used CPA techniques for binary and multiclass problems, and use of the R software system to accomplish the analysis. Coverage draws on the extensive literature available on the subject, including descriptive and inferential approaches to CPA. Exercises are included at the end of each chapter to reinforce learning.Key Features: An introduction to binary and multiclass classification problems is provided, including some classifiers based on statistical, machine and ensemble learning. Commonly used techniques for binary and multiclass CPA are covered, some from less well-known but useful points of view. Coverage also includes important topics that have not received much attention in textbook accounts of CPA. Limitations of some commonly used performance measures are highlighted. Coverage includes performance parameters and inferential techniques for them. Also covered are techniques for comparative analysis of competing classifiers. A key contribution involves the use of key R meta-packages like tidyverse and tidymodels for CPA, particularly the very useful yardstick package. This is a useful resource for upper level undergraduate and masters level students in data science, machine learning and related disciplines. Practitioners interested in learning how to use R to evaluate classifier performance can also potentially benefit from the book. The material and references in the book can also serve the needs of researchers in CPA.

Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Cover Power Station Maintenance
PEP (Professional EngineeringPublishers)
Cover Intelligent Networks
Anil Kumar Sagar
Cover Practical Antenna
Kushmanda Saurav
Cover Practical Antenna
Kushmanda Saurav

Kundenbewertungen