img Leseprobe Leseprobe

Data Visualization

A Practical Introduction

Kieran Healy

EPUB
ca. 52,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Princeton University Press img Link Publisher

Geisteswissenschaften, Kunst, Musik / Pädagogik

Beschreibung

An accessible primer on how to create effective graphics from data

This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way.

Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible.

Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings.

  • Provides hands-on instruction using R and ggplot2
  • Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent
  • Includes a library of data sets, code, and functions

Weitere Titel von diesem Autor

Kundenbewertungen

Schlagwörter

Debugging, Model checking, Exploratory data analysis, Knitr, Result, Portable Network Graphics, Subtitle (captioning), Ranking (information retrieval), Cherry picking, Level of detail, Cook's distance, Correlation does not imply causation, Purple America, Grammar, Newline, Estimation, Dummy variable (statistics), Life expectancy, Plain text, Sanity check, Syntax error, Rule of thumb, Percentage, Subset, Instruction set, Cheat sheet, Sensitivity analysis, Variable (computer science), Shapefile, Spline (mathematics), Summary statistics, Temporary variable, Bar chart, Accuracy and precision, Polynomial regression, Data set, Data visualization, Cartesian coordinate system, Quantity, Path (computing), Schematic, Addition, Categorical variable, GEOM, Generalized additive model, Year, Convenience function, Error bar, Instance (computer science), Cluster analysis, Scatter plot, Markdown, Coefficient, Statistic, Lossless compression, Inference, RStudio, Ggplot2, Backslash, Case sensitivity, Likert scale, Robust regression, Linear regression, Hadley Wickham, Scientific notation, Typeface, Calculation, Poisson point process, Histogram, Pie chart