Graphical Models
Matthias Steinbrecher, Rudolf R Kruse, Christian Borgelt, et al.
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik
Beschreibung
Graphical models are of increasing importance in applied statistics, and in particular in data mining. Providing a self-contained introduction and overview to learning relational, probabilistic, and possibilistic networks from data, this second edition of Graphical Models is thoroughly updated to include the latest research in this burgeoning field, including a new chapter on visualization. The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research.
Rezensionen
"The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research." (Zentralblatt Math, 1 August 2013) "All of the necessary background is provided, with material on modeling under uncertainty and imprecision modeling, decomposition of distributions, graphical representation of distributions, applications relating to graphical models, and problems for further research."
Kundenbewertungen
Bayesian Analysis, Computational & Graphical Statistics, Computertechnik, Statistik, Data Mining Statistics, Datenanalyse, Rechnergestützte u. graphische Statistik, Bayes-Verfahren, Applied Probability & Statistics, Data Mining, Statistics, Angewandte Wahrscheinlichkeitsrechnung u. Statistik