Interdependent Human-Machine Teams
Hesham Fouad (Hrsg.), Donald Sofge (Hrsg.), William Lawless (Hrsg.), Ranjeev Mittu (Hrsg.)
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Informatik
Beschreibung
Interdependent Human-Machine Teams: The Path to Autonomy examines the foundations, metrics, and applications of human-machine systems, the legal ramifications of autonomy, trust by the public, and trust by the users and AI systems of their users, integrating concepts from various disciplines such as AI, machine learning, social sciences, quantum mechanics, and systems engineering. In this book, world-class researchers, engineers, ethicists, and social scientists discuss what machines, humans, and systems should discuss with each other, to policymakers, and to the public. It establishes the meaning and operation of "e;shared contexts"e; between humans and machines, policy makers, and the public and explores how human-machine systems affect targeted audiences (researchers, machines, robots, users, regulators, etc.) and society, as well as future ecosystems composed of humans, machines, and systems. - Investigates how interdependence is the missing ingredient necessary to produce operational autonomous systems- Integrates concepts from a wide range of disciplines, including applied and theoretical AI, quantum mechanics, social sciences, and systems engineering- Presents debates, models, and concepts of mutual dependency for autonomous human-machine teams, challenging assumptions across AI, systems engineering, data science, and quantum mechanics