img Leseprobe Leseprobe

Inequalities for Differential Forms

Craig Nolder, Shusen Ding, Ravi P. Agarwal, et al.

PDF
ca. 96,29
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer New York img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Analysis

Beschreibung

Differential forms satisfying the A-harmonic equations have found wide applications in fields such as general relativity, theory of elasticity, quasiconformal analysis, differential geometry, and nonlinear differential equations in domains on manifolds.

This monograph is the first one to systematically present a series of local and global estimates and inequalities for such differential forms in particular. It concentrates on the Hardy-Littlewood, Poincaré, Cacciooli, imbedded and reverse Holder inequalities. Integral estimates for operators, such as homotopy operator, the Laplace-Beltrami operator, and the gradient operator are also presented. Additionally, some related topics such as BMO inequalities, Lipschitz classes, Orlicz spaces and inequalities in Carnot groups are discussed in the concluding chapter. An abundance of bibliographical references and historical material supplement the text throughout.

This book will serve as an invaluable reference for researchers, instructors and graduate students in analysis and partial differential equations and could be used as additional material for specific courses in these fields.

Weitere Titel in dieser Kategorie

Kundenbewertungen

Schlagwörter

Sobolev space, a-harmonic equations, general relativity, partial differential equation, manifold, partial differential equations, differential geometry, theory of elasticity, Differential Equations, quasiconformal analysis