Bayesian Network

Modeling Uncertainty in Robotics Systems

Fouad Sabry

EPUB
ca. 4,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

One Billion Knowledgeable img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Technik

Beschreibung

1: Bayesian network: Delve into the foundational concepts of Bayesian networks and their applications.


2: Statistical model: Explore the framework of statistical models crucial for data interpretation.


3: Likelihood function: Understand the significance of likelihood functions in probabilistic reasoning.


4: Bayesian inference: Learn how Bayesian inference enhances decisionmaking processes with data.


5: Pattern recognition: Investigate methods for recognizing patterns in complex data sets.


6: Sufficient statistic: Discover how sufficient statistics simplify data analysis while retaining information.


7: Gaussian process: Examine Gaussian processes and their role in modeling uncertainty.


8: Posterior probability: Gain insights into calculating posterior probabilities for informed predictions.


9: Graphical model: Understand the structure and utility of graphical models in representing relationships.


10: Prior probability: Study the importance of prior probabilities in Bayesian reasoning.


11: Gibbs sampling: Learn Gibbs sampling techniques for efficient statistical sampling.


12: Maximum a posteriori estimation: Discover MAP estimation as a method for optimizing Bayesian models.


13: Conditional random field: Explore the use of conditional random fields in structured prediction.


14: Dirichletmultinomial distribution: Understand the Dirichletmultinomial distribution in categorical data analysis.


15: Graphical models for protein structure: Investigate applications of graphical models in bioinformatics.


16: Exponential family random graph models: Delve into exponential family random graphs for network analysis.


17: Bernstein–von Mises theorem: Learn the implications of the Bernstein–von Mises theorem in statistics.


18: Bayesian hierarchical modeling: Explore hierarchical models for analyzing complex data structures.


19: Graphoid: Understand the concept of graphoids and their significance in dependency relations.


20: Dependency network (graphical model): Investigate dependency networks in graphical model frameworks.


21: Probabilistic numerics: Examine probabilistic numerics for enhanced computational methods.

Weitere Titel in dieser Kategorie
Cover Current crop models
Gerrit Hoogenboom

Kundenbewertungen

Schlagwörter

Bayesian network, Statistical model, Pattern recognition, Sufficient statistic, Gaussian process, Likelihood function, Bayesian inference